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Abstract—ortho-Amino homobenzylic thioacetals are prepared from ortho-nitrobenzaldehydes via homologation using an alpha-
methoxy Wittig reagent. Titanium reagents are generated from the 1,3-dithianes using a low valent titanium reagent and are then
used to alkylidenate resin-bound esters. An N-silylated Boc group protects the ortho-amino functionality. Traceless SPS of quino-
lines is completed by treating the resulting resin-bound enol ethers with TFA and then oxidizing with manganese dioxide to give 2-
substituted quinolines in high purity without the need for chromatography.
� 2004 Elsevier Ltd. All rights reserved.
Quinolines are found in many medicinally interesting
compounds1 and for this reason researchers have contin-
ued to improve traditional methods and develop new
strategies for their construction.2 However, in spite of
the importance of solid-phase synthesis (SPS),3 few
methods for the construction4,5 or decoration6 of quino-
lines on solid-phase have been developed. Of these, only
Levacher and co-workers� adaptation5 of the Friedlän-
der synthesis is traceless.7 Here we describe a method
for terminating traditional SPS in a traceless way by
conversion of an ester linker into a range of quinolines
using novel titanium reagents. This is the first time that
titanium alkylidenes8 have been used in the construction
of quinolines, and the method has potential as in theory
a diverse range of esters could be synthesized by stand-
ard split and mix techniques prior to our termination
sequence.
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Scheme 1.
We have recently shown that titanium benzylidene rea-
gents9–13 1 (Scheme 1) bearing a protected oxygen, nitro-
gen or sulfur nucleophile in the ortho position are easy
to generate from thioacetals using low valent titanium
species, Cp2Ti[P(OEt)3]2, and will benzylidenate resin-
bound esters 2 to give resin-bound enol ethers 3. A range
of functionality is tolerated in the titanium benzylidenes
1, including boronate, acetal, fluoro and some amino
and carbamate groups. Treating the enol ethers 3 with
acid then yields 2-substituted benzofurans9–11 in-
doles11,12 or benzothiophenes13 4 in high purity because
the nature of the linker has been switched from an acid-
stable ester to an acid-sensitive enol ether, ensuring that
no products arise from unreacted resin-bound esters 2.
Furthermore, there is no trace in the products of where
the resin had been attached. Thus, the reagents allow
traceless termination of an SPS to form a range of
oacetals; Wittig reaction.
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Scheme 2.
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heterocycles from resin-bound esters, and this has great
potential in SPS where a diverse range of esters may be
prepared using automation. At first sight, access to
quinolines using related chemistry would seem more
demanding: the necessary homobenzylic titanium rea-
gents would be expected to be more difficult to generate;
the silylated carbamate protecting groups successful in
the indole series might be less stable towards a titanium
alkylidene tethered by a more flexible chain; and a post-
cleavage oxidation step would be required to aromatize
to the quinolines. However, we here report the success of
this strategy.

The necessary dithiane substrates 10 for titanium alkyl-
idene formation were prepared from commercially
available 2-nitrobenzaldehydes 5 as shown in Scheme
2. Reaction with the Wittig reagent derived from meth-
Scheme 3.

Figure 1.
oxymethyl triphenylphosphonium chloride14 gave pre-
dominantly E-enol ethers15 6 with the E-selectivity
decreasing with increasing electron-donating ability of
the aromatic ring, which is surprising but consistent with
the E:Z ratios reported for similar reactions.16 Enol
ethers 6 were converted into thioacetals 7 directly fol-
lowing work-up of the Wittig reaction. Reduction17 to
the amines 8 and Boc protection gave carbamates 9,
which were purified by recrystallization so that no chro-
matography was used to prepare these in four or five
steps from aldehydes 5. Silylation of the carbamate
groups was followed by reduction of the dithianes 10
to give the active alkylidenating agents, presumably tita-
nium alkylidenes 11.

A selection of quinolines18,19 14 (Scheme 3 and Fig. 1)
were then prepared in high purity from Merrifield-resin-
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bound esters 12a 0–d 0 by treating the latter with the
titanium alkylidenes 11a–c, washing the resin, releasing
the arylammonium salts 13 under acid conditions and
oxidizing to give the quinolines 14. A solid oxidant
was chosen so that it could be removed simply by
filtration.
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